
Migrating SMS Gateway
service to the AWS Cloud

CASE STUDY

Gaining agil ity and f lexibil ity to quickly adapt and scale.
Increased system resi l iency and high availabil ity due to built- in
infrastructure redundancy provided by the AWS cloud.
Easy on-demand system scalabil ity provided by the combination of
cloud-based infrastructure and the Kubernetes platform.
Introduction of cost-effective resource usage.
Simplif ied project maintenance resulting from passing the physical
infrastructure management responsibil ity to the cloud provider.

Intelli Messaging is a Tier 1 SMS Gateway Service provider in Australia, also
offering Direct Carrier Connection routing to New Zealand. The service is
designed and built for enterprise performance and reliability using
geographically redundant systems and commercial carrier-grade technology.
The solution lets users cost-effectively include mobile communication in their
business processes for either marketing or operations.

AWS Cloud, Kubernetes, Helm, Terraform, MongoDB, MySQL,
Prometheus, Scala, Java, Akka, Grafana, Graylog, Docker, Jenkins

To adopt the existing solution to the AWS cloud environment
while maintaining continuous availabil ity of the service.

PROJECT OVERVIEW

A successful cloud migration and modernization of an SMS
gateway system.

CLIENT PROFILE

INDUSTRY
Telecom

CHALLENGE

PROJECT DURATION
1 year

TECHNOLOGIES

GOAL OF THE PROJECT

BENEFITS

Intelli Messaging SMS gateway is a carrier-grade messaging technology

for the enterprise and application providers. The system is designed to

process large volumes of SMS traffic and is able to accept client

submissions via various entry points such as SMPP connections, REST

API, or email. These submissions are converted into SMPP messages

and routed via a set of configurable routes to the other SMS gateways.

The system is also capable of receiving delivery receipts from those

gateways and pushing notifications about them via different

notification channels to the configured recipients. Another type of

supported traffic includes Mobile Originated messages that can be

received from the SMS gateways and pushed towards customer-defined

endpoints.

For the past 10 years, SoftwareMill has been engaged in developing a

new bulk-messaging gateway that met the client’s expectations for

messaging volume, throughput, and availability. This included software

design and development, testing, deployment, support, and project

management for the new gateway system.

In this business domain, high availability and resilience to failure are

absolute must-haves. Failing to provide those may result in damaging

the company’s reputation and subsequently losing customers’ trust.

With the passing years, it had become clear that trying to provide a

highly available (HA) and resilient system while running on a local data

center was becoming a constantly increasing challenge, mostly due to

the effort required to maintain physical infrastructure and because of

the way the deployment process compatible with that infrastructure

was designed. Thus, about a year ago, we were presented with a task to

replace the on-premises technology with flexible, scalable, and cost-

effective computing power in the cloud.

BACKGROUND

https://www.flexys.com/

By the time the client started thinking about the cloud migration

process, the Intelli Messaging system had been running for roughly 10

years on-premises. The old infrastructure was not flawless. This setup

had various low-level infrastructure issues and didn’t allow to scale the

system cost-effectively.

System services were tied to specific machines based on the predicted

resource usage, which meant they could not be easily spun up

elsewhere in case of failure. These services were deployed as sets of

Java jars, meaning they were not properly isolated when running on the

same machine. The deployment process itself was cumbersome in case

something went wrong, and rollbacks were done by manually

modifying symbolic links to point them to the previous deployment

directory. Deploying some of the critical services that are supposed to

be “always” online was very stressful to anyone participating in the

process.

The event store was running on a truly outdated version of MongoDB.

Upgrading that instance was something everyone was extremely

reluctant about, given the potential risk in case something went wrong.

In order to migrate the system to the cloud, it was necessary to identify

the required cloud capabilities and limitations in the context of Intelli

Messaging. On top of that, it was very important to address the topic of

migrating the data from the data center to the cloud as well as

minimizing the system downtime window. An additional set of

requirements around security features based on VPN was added by

some of the customers who were aware of the migration plan.

CHALLENGES

.....

Once the decision has been made, it was time to analyze the existing

setup and explore the possibilities offered by the cloud. The primary

acceptance goal was to have the system providing the same set of

capabilities, but with improved availability, resilience, scalability, and

less maintenance overhead. Internally, the development team has set

up expectations on reducing the complexity of the deployment

process and also reducing the level of software maintenance effort.

The first step was to research the available cloud solutions on the

market. It was necessary to compare the pricing, features, and

capabilities, as well as support options. An additional factor was that

our client already had some other system running on AWS, which

meant they were familiar with the service. And so, Amazon AWS was

chosen.

Once the provider has been selected, it was time to start thinking about

the best way of using available cloud services. Amazon Virtual Private

Cloud service made it possible to create completely isolated

environments for the production, staging, and internal tools, while the

EC2 service provided the team with the capability to spin up and

terminate as many instances as needed by the system. An additional

benefit was that AWS takes care of the creation and maintenance of

load balancing building blocks, providing such resources as ALB and

NLB load balancers out of the box.

During this stage, it became clear that it was necessary to automate

the process of creating and managing whatever infrastructure required

by our system on top of the AWS offering. To that end, the Terraform

tool was used to define infrastructure as a code for all environments

that we needed. Combined with Amazon DynamoDB and S3 to store

the Terraform state, it became a very useful tool for maintaining our

cloud environments.

SOLUTION

.....

Since the system has a number of publicly available entry points that

clients can access via DNS name, it was required to be able to expose

verified certificates for these clients. A task that is much easier when

you work with the AWS Certificate Manager service. Amazon Route 53

service was also used to configure mappings between specific DNS

names and respective load balancers.

One of the big pains was the way the system was deployed on the old

infrastructure. With the cloud providing the foundation for the system,

choosing containers to provide an isolated environment for each

service deployment seemed like a natural choice. Docker was an

obvious candidate there. Amazon Elastic Container Registry was used

as a repository for the service images. These images are created via

Jenkins builds - and the Jenkins server itself is running on one of the

EC2 instances.

As with any non-trivial system, you need to address the problem of

resources required by its services. The solution had to be easily scalable

and resilient to failures related to resource usage, which meant

increased service availability.

First, the resource usage on the old infrastructure was measured. With

that data, it was possible to define the minimum expectations in terms

of computing power that was needed from the cloud. This translated

into the choice of EC2 instance types that the system would run on.

The next thing to take care of was the scaling capability. Doing it

manually was out of the question. Amazon Elastic Kubernetes Service

(EKS) was chosen to run the Kubernetes clusters providing the

environment to deploy the services. With the Auto Scaling groups

managed by the EKS, the system automatically gets the resources it

needs.

SOLUTION

.....

event store (MongoDB)

and reporting database (MySQL).

When resources are no longer needed, they are automatically released.

Based on that foundation, it was possible to define the conditions

under which specific services would be scaled to handle incoming

traffic peaks.

One of the most important topics to consider was the migration of the

data that the system generates. Data integrity after the migration was a

priority requirement.

The system works with two databases:

It was decided that in both cases it is best to set up a replication

process that will ensure data is up-to-date the moment the system in

the cloud starts running.

On the AWS end, the AWS RDS service was chosen to maintain the

reporting database. That provided a resilient database service, with

automatic backup capability as well as a set of configurable AWS

CloudWatch alerts that could be defined to let the team know when

things go the wrong way.

An important characteristic of the system is that some of its services

are expected to run without interruption for a very long period of time.

Failing to ensure this specific capability could be viewed as a sign of

poor quality by some of the customers. But the services were supposed

to run within the ever-changing Kubernetes cluster environment,

where your pod could be re-deployed anytime depending on the overall

system resources needs. Dedicated Kubernetes eviction policies have

been implemented in order to reduce the risk of this happening for

these critical services. Thanks to that, the risk of such a service having

an interruption is much lower than it would be otherwise.

SOLUTION

.....

Because of the security requirements, it was necessary to configure

various secure channels of accessing the system for the team and the

system users, as well as setting up a secure connection for the data

migration process. That was resolved by using the AWS Transient

Gateway, AWS Site to Site VPN connections, AWS VPN Client service,

and a custom VPN server handling the connections where the outgoing

traffic had to be sent with a public, constant IP address.

Last but not least, some time was spent on reviewing the available

options in terms of upgrading the technology stack in the system.

Among other things, the MongoDB engine was successfully upgraded

to a newer version.

SOLUTION

REST SMPP

SMPP SMPP SMPP

REST SMPP

MYSQL

SERVICE SERVICE

METRICS LOGS

MONGO
DB

GRAYLOG

SOLUTION

CLIENTS

MAIL WEBSERVICE

MAIL

PUSH NOTIFICATIONS

AWS CLIENT
VPN

TEAM

AWS SITE-TO-SITE
VPN

DATA CENTER

VPC

3RD PARTY SMPP GATEWAYS

VPC

STRONGSWAN

RDS

VPC

Fig 1. - Intelli Messaging Architecture Overview

.....

As an outcome of this work, the Intelli Messaging system has increased

overall traffic handling capacity. The solution already had a chance to

prove its worth. Shortly after the official launch, it received traffic

several times higher compared to what it was capable of handling

before. It wasn’t just a single spike but it lasted for a few hours. The

client immediately felt more confident about the stability and

throughput of the system.

The system can now automatically scale out or scale in based on the

actual resource usage. No manual intervention needed, all that is

required is to maintain the rules which define the scaling triggers.

Thanks to the Kubernetes and EKS foundation, the system is much

more reliable and resistant to failures. The number of incidents that

cannot be resolved by automatic service redeployment has gone down

significantly. Service availability is higher, giving the customers more

confidence in the quality of service.

Physical infrastructure incidents are not a problem anymore. Things

such as hard drive failures and equipment redundancy are managed by

the cloud provider, taking away the stress and effort required to handle

this kind of incident under the pressure of time.

System owners now have a much better insight into the costs of

running the system. AWS provides clear and up-to-date reports about

current billings, therefore it’s easier to make predictions and plan the

budget. The AWS Cost Explorer service can also provide some

recommendations on the most optimal AWS resource usage based on

historical data.

RESULTS

.....

The service deployment process is now faster, leaner, and more resilient to

potential issues. Rolling back a failed deployment is a matter of seconds

instead of minutes. Releases can be performed more often, with a higher

level of confidence and lower level of stress.

The complete migration from the on-premises data center to AWS cloud

solutions took about a year to finish. With the system foundation based on

the cloud, it became easier to identify the right direction for future

improvements of the overall system design and performance.

"We didn't want to import our existing problems into a new environment.

SoftwareMill was pragmatic in determining what needed to be

re-architected and what could be "lifted and shifted". Using Kubernetes,

Helm, and Terraform on AWS, SoftwareMill was able to quickly test and

validate different migration strategies with the aim of minimizing service

disruption to our customers down to minutes, not hours or days.

As a result, we were able to confidently migrate our services from

our on-premise environment to AWS and make improvements

to our critical components and processes along the way."

Adam Lau, CIO, Intelli Messaging

RESULTS

GOT AN IDEA?
WE'LL MAKE IT HAPPEN

contact@softwaremill.com
www.softwaremill.com

We are SoftwareMill, a Poland(EU)-based consulting & custom software development company, delivering services
remotely, worldwide for over 10 years. Being experts in Scala (Akka, Play, Spark), Java, Kotlin we specialize in

blockchain, distributed big data systems, machine learning, IoT, and data analytics.

We are a leading consultancy chosen for digital transformation. Integrity, versatility, understanding of the business,
right soft skills, strong work ethic, rich experience and top notch mastery of technology makes us the perfect choice.

Have a project in mind? We can proactively transform your business with technology

https://softwaremill.com/contact/
https://softwaremill.com/contact/

